Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Prosthet Dent ; 128(5): 1114-1120, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33685653

RESUMO

STATEMENT OF PROBLEM: The presence of biofilms on maxillofacial silicone increases the risk of infections and reduces durability. Whether silver nanoparticles (AgNPs) with potent antimicrobial effects help reduce biofilm formation is unclear. PURPOSE: The purpose of this in vitro study was to assess the antimicrobial effect of sub 10-nm AgNPs in maxillofacial silicone against Staphylococcus aureus, Candida albicans, and mixed species biofilms containing both and to test the effectiveness of different AgNP concentrations against all 3 biofilms in vitro. MATERIAL AND METHODS: Silicone disks (M511; Technovent Ltd) containing 0.0% (control), 0.1%, and 0.5% AgNPs were fabricated and treated with S. aureus, C. albicans, and mixed species strains of both in 24-well culture plates containing appropriate media. Each well received a 0.1-mL aliquot of the standardized suspension of microorganisms. The plates were incubated for 21 consecutive days, and colony-forming units per milliliter (CFU/mL) were measured on the first, third, fifth, seventh, fifteenth, and twenty-first day with the Miles and Misra method. Data were analyzed by 2-way ANOVA and the paired t test to evaluate the relationship between AgNP concentration, microbial strain, and time (α=.05). Mean CFU/mL differences for each time and for each biofilm category were assessed by repeated measure ANOVA. RESULTS: AgNPs decreased the mean CFU/mL in both concentrations compared with the control. The 0.1% concentration showed sustained efficacy throughout the test, while the 0.5% concentration had high efficacy initially with a gradual decrease. However, the results were inconsistent for the mixed biofilm. The paired sample t test at day 3 and 15 and day 3 and 21 showed statistically significantly different results (P<.001) in all but 1 group in the 0.5% concentration. The 2-way mixed ANOVA showed statistically significant (P<.001) interaction between AgNP concentration and time in all groups. The 1-way ANOVA of AgNP concentrations was statistically significantly different (P<.001) for all time points. A statistically significant (P<.001) effect of time on CFU/mL was found for all the AgNP concentration groups in all 3 biofilms. CONCLUSIONS: Silicone elastomers with sub 10-nm AgNPs displayed antimicrobial properties in vitro against S. aureus, C. albicans, and mixed species strains. AgNPs (0.1%) were effective against both microbial strains and can provide a baseline for further long-term studies regarding antimicrobial efficacy, silver ion leaching, and cellular internalization. Mixed species biofilm needs further exploration with standardized study parameters.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Candida albicans , Staphylococcus aureus , Prata/farmacologia , Silicones , Nanopartículas Metálicas/uso terapêutico , Biofilmes , Anti-Infecciosos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...